

LIMITES:

Revisão: Limite Infinito;

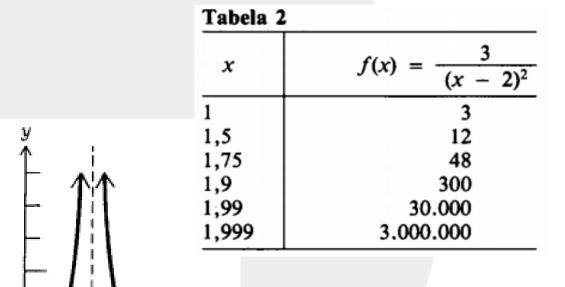
Limite no infinito;

Assíntotas Horizontais;

Continuidade;

Aula 5 – Limites Infinito $(f(x) \rightarrow \infty)$

Tabela 1	
x	$f(x) = \frac{3}{(x-2)^2}$
3	3
2,5	12
2,25	48
2,1	300
2,01	30,000
2,001	3.000.000



Aula 5 – Limites Infinito ($f(x) \rightarrow \infty$)

(TEOREMA 12)

Se r for um inteiro positivo qualquer, então

(i)
$$\lim_{x \to 0^+} \frac{1}{x'} = +\infty$$

(ii)
$$\lim_{x \to 0^-} \frac{1}{x'} = \begin{cases} -\infty & \text{se } r \text{ for impar} \\ +\infty & \text{se } r \text{ for par} \end{cases}$$

Exemplo Gráfico Assíntota Vertical

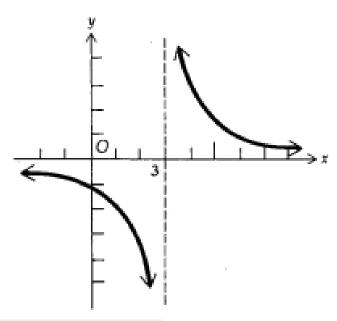
EXEMPLO 4 ção definida Ache a assíntota vertical e faça um esboço do gráfico da fun-

$$f(x) = \frac{3}{x - 3}$$

Solução

$$\lim_{x \to 3^+} \frac{3}{x - 3} = +\infty \qquad \lim_{x \to 3^-} \frac{3}{x - 3} = -\infty$$

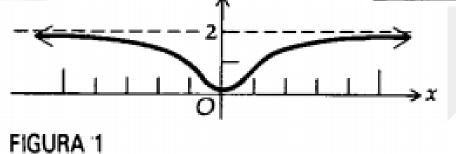
$$\lim_{x \to 3^-} \frac{3}{x - 3} = -\infty$$



(Aula 6): Limites no Infinito ($x \rightarrow \infty$)

Tabela 1	
x	$f(x) = \frac{2x^2}{x^2 + 1}$
0	. 0
1	1
2	1,6
. 3	1,8
4	1,882353
5	1,923077
10	1,980198
100	1,999800
1000	1,999998

Tabela 2	
x	$f(x) = \frac{2x^2}{x^2 + 1}$
-1	1
-2	1,6
- 3	1,8
- 4	1,882353
– 5	1,923077
-10	1,980198
-100	1,999800
- 1000	1,999998



(Aula - 6): Limites no Infinito ($x \rightarrow \infty$)

(TEOREMA 13)

Se r for um inteiro positivo qualquer, então

(i)
$$\lim_{x \to +\infty} \frac{1}{x'} = 0$$

(ii)
$$\lim_{x \to -\infty} \frac{1}{x'} = 0$$

Aula 6 – Limites no Infinito ($x \rightarrow \infty$)

DEFINIÇÃO

Seja f uma função definida em um intervalo $(a, +\infty)$ o limite de f(x) quando x cresce indefinidamente, é L, escrito

$$\lim_{x \to +\infty} f(x) = L$$

se para todo $\epsilon > 0$, não importa quão pequeno, existir um número N > 0 tal que

se
$$x > N$$
 então $|f(x) - L| < \epsilon$

Exemplo:

$$\lim_{x \to -\infty} \frac{2x^2 - x + 5}{4x^3 - 1}$$

Limites no Infinito

Solução Para usar o Teorema de Limite 13, dividimos o numerador e o denominador pela maior potência de x que ocorre neles; neste caso, x^3 .

$$\lim_{x \to -\infty} \frac{2x^2 - x + 5}{4x^3 - 1} = \lim_{x \to -\infty} \frac{\frac{2}{x} - \frac{1}{x^2} + \frac{5}{x^3}}{4 - \frac{1}{x^3}}$$

$$= \frac{\lim_{x \to -\infty} 2 \cdot \lim_{x \to -\infty} \frac{1}{x} - \lim_{x \to -\infty} \frac{1}{x^2} + \lim_{x \to -\infty} 5 \cdot \lim_{x \to -\infty} \frac{1}{x^3}}{\lim_{x \to -\infty} 4 - \lim_{x \to -\infty} \frac{1}{x^3}}$$
$$= \frac{2 \cdot 0 - 0 + 5 \cdot 0}{4 - 0} = 0$$

$$\lim_{x \to +\infty} \frac{2x - x^2}{3x + 5}$$

Exemplo: Limites no Infinito

$$\lim_{x \to +\infty} \frac{2x - x^2}{3x + 5} = \lim_{x \to +\infty} \frac{\frac{2}{x} - 1}{\frac{3}{x} + \frac{5}{x^2}}$$

Os limites do numerador e do denominador serão considerados separadamente.

$$\lim_{x \to +\infty} \left(\frac{2}{x} - 1 \right) = \lim_{x \to +\infty} \frac{2}{x} - \lim_{x \to +\infty} 1 \qquad \lim_{x \to +\infty} \left(\frac{3}{x} + \frac{5}{x^2} \right) = \lim_{x \to +\infty} \frac{3}{x} + \lim_{x \to +\infty} \frac{5}{x^2}$$

$$= 0 - 1 \qquad \qquad = 0 + 0$$

$$= -1 \qquad \qquad = 0$$

Assim sendo, temos o limite de um quociente no qual o limite do numerador é - 1 e o limite do denominador é 0, onde o denominador está tendendo a zero por valores positivos. Pelo Teorema de Limite 12 (iii) segue que

$$\lim_{x \to +\infty} \frac{2x - x^2}{3x + 5} = -\infty$$

Exemplos – Limites no Infinito ($x \rightarrow \infty$)

$$\lim_{x\to+\infty}\frac{4x-3}{2x+5}$$

$$\lim_{x \to +\infty} \frac{2x - x^2}{3x + 5}$$

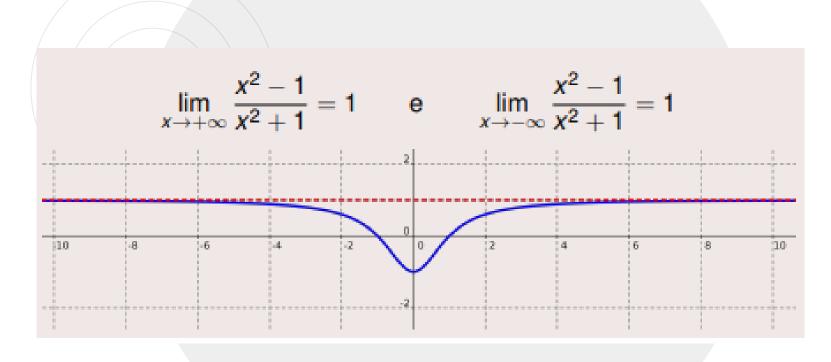
$$\lim_{x \to -\infty} \frac{3x + 4}{\sqrt{2x^2 - 5}}$$

Assíntotas Horizontal

A reta y = b é denominada uma assíntota horizontal do gráfico da função f se pelo menos uma das seguintes afirmações for válida:

- (i) $\lim_{x \to a} f(x) = b$ e para um número N, se x > N, então $f(x) \neq b$;
- (ii) $\lim_{x \to -\infty} f(x) = b$ e para um número N, se x < N, então $f(x) \neq b$.

Exemplo Gráfico Assíntota Horizontal

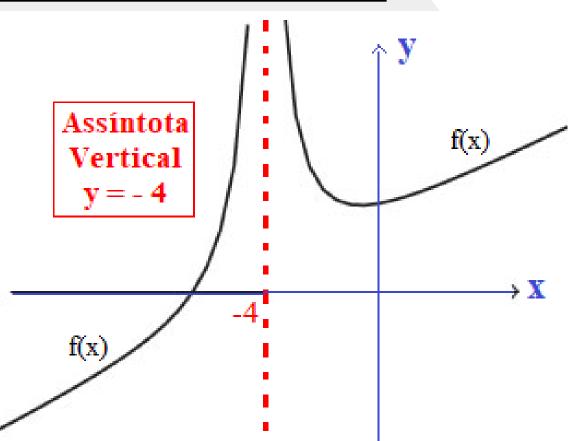


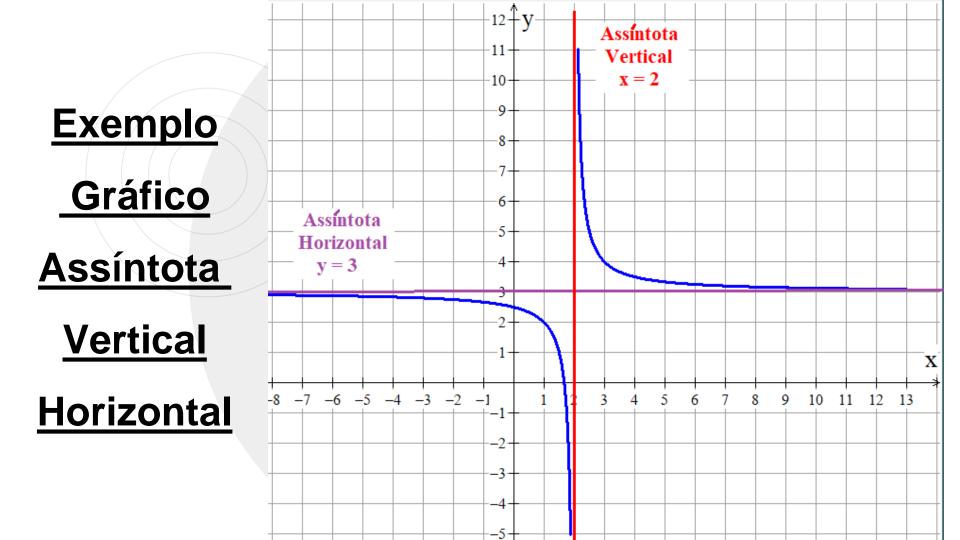
Exemplo Gráfico Assíntota Vertical

$$\lim_{x \to -4^-} f(x) = +\infty$$

$$\lim_{x \to -4^+} f(x) = +\infty$$

$$\lim_{x \to -4} f(x) = +\infty$$





Continuidade de uma Função

DEFINIÇÃO -

Dizemos que a função f é **contínua** no número a se e somente se as seguintes condições forem satisfeitas:

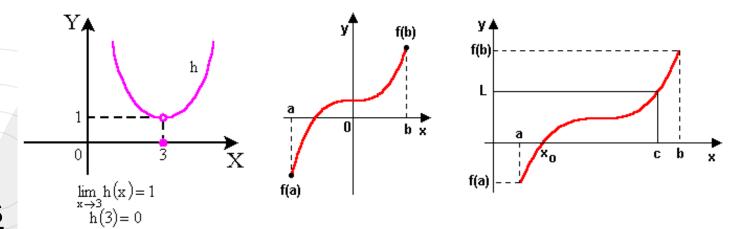
- (i) f(a) existe; .
- (ii) $\lim_{x \to a} f(x)$ existe;
- (iii) $\lim_{x \to a} f(x) = f(a).$

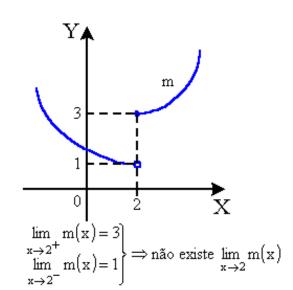
Se uma ou mais de uma dessas condições não forem verificadas em a, a função f será descontínua em a.

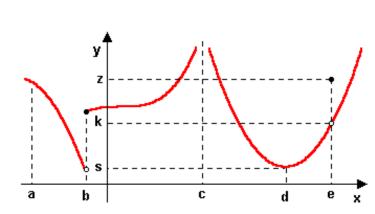
Exemplos de funções Contínuas

<u>e</u>

Descontínuas







Continuidade de uma Função

TEOREMA

Se f e g forem funções contínuas em um número a, então

- (i) f + g será contínua em a;
- (ii) f g será contínua em a;
 - (iii) $f \cdot g$ será contínua em a;
- (iv) f/g será contínua em a, desde que $g(a) \neq 0$.

Exemplo: Analise se G(x) é contínua em todos os pontos, em especial em x = 4

$$G(x) = \begin{cases} \frac{x^2 - 3x - 4}{x - 4} & \text{se } x \neq 4 \\ 2 & \text{se } x = 4 \end{cases}$$

Assista, pause e reflita sobre este vídeo! ©

Leia o material sugerido (Livro e artigos)!

Busque mais informações por sua conta!

Faça os exercícios propostos o quanto antes!