

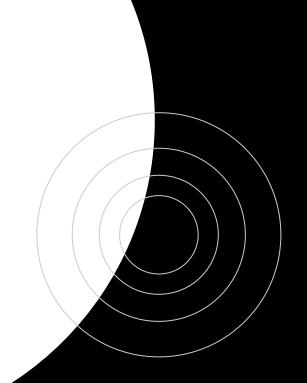
LIMITES:

Definição formal;

Unicidade;

Limites pelas tabelas

Limite intuitivo



Limites: História

Introdução

O conceito de **limite** é fundamental no **cálculo diferencial**, um campo da Matemática que iniciou – se no século XVII sendo bastante produtivo em resultados e aplicações em várias áreas do conhecimento, como a Física, a Engenharia, a Economia, a Geologia, a Astronomia, a Biologia, entre outras.

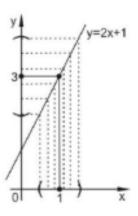
Com o desenvolvimento do cálculo diferencial, matemáticos como Huygens (1629 – 1695), Newton (1642 – 1727) e Leibniz (1646 – 1716) tiveram papel marcante. Buscando aperfeiçoar a conceituação de limites, tiveram destaques as contribuições de d' Alembert (1717 – 1783) e de Cauchy (1789 – 1857).

4

Limites: Noção intuitiva

Seja a função f(x) = 2x + 1. Vamos associar valores de x que se aproximem de 1, pela sua direita (valores maiores que 1) e pela esquerda (valores menores que 1) e calcular o valor correspondente de y.

Pela direita		Pel	Pela esquerda	
\boldsymbol{x}	y = 2x + 1	\boldsymbol{x}	y = 2x + 1	
1,5	4	0,5	2	
1,3	3,6	0,7	2,4	
1,1	3,2	0,9	2,8	
1,05	3,1	0,95	2,9	
1,02	3,04	0,98	2,96	
1,01	3,02	0,99	2,98	
	l		I	

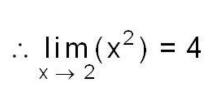


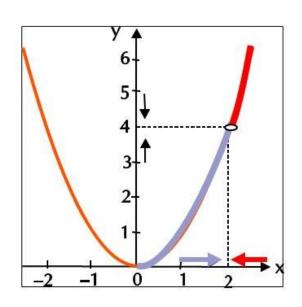
Observamos que quando x tende para 1, y tende para 3 e o limite da função é 3.

$$\lim_{x\to 1}(2x+1)=3$$

Noção Intuitiva de Limite Noção intuitiva de limite

	×	f(x)
	1,900	3,610000
aproximação pela	1,990	3,960100
esquerda de 2	1,999	3,996001
	2,000	4,000000
	2,001	4,004001
aproximação pela	2,010	4,040100
direita de 2	2,100	4,410000





"O limite da função $f(x) = x^2$ quando x tende a 2 é 4".

Tabela 1				
x	$f(x) = \frac{2x^2 + x - 3}{x - 1}$			
0	3			
0,25	3,5			
0,5	4			
0,75	4,5			
0,9	4,8			
0,99	4,98			
0,999	4,998			
0,9999	4,9998			
0,99999	4,99998			

$$\lim_{x \to 1} \frac{2x^2 + x - 3}{x - 1} = 5$$

$$f(x) = \frac{2x^2 + x - 3}{x - 1}$$

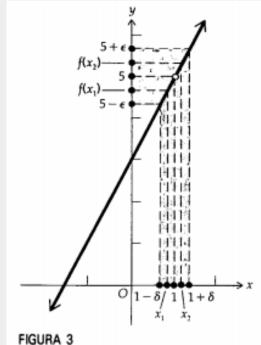


Tabela 2				
x	$f(x) = \frac{2x^2 + x - 3}{x - 1}$			
2	7			
1,75	6,5			
1,5	6,0			
1,25	5,5			
1,1	5,2			
1,01	5,02			
1,001	5,002			
1,0001	5,0002			
1,00001	5,00002			

Limites (intuitivo): Aproximações

- 4 para cada lado (direita e esquerda)
- Obedecer uma certa lógica
- Marcar o ponto na Reta Real
- Ter atenção ao Sinal do número
- Cuidado com as Raízes e Frações

Exemplo - Faça as aproximações, usando 4 valores para cada:

a)
$$x \rightarrow (0)$$

b)
$$x \rightarrow (4)$$

c)
$$x \rightarrow (-4)$$

d)
$$x \to \left(\frac{1}{2}\right)^+$$

e)
$$x \to \left(-\frac{1}{2}\right)^{-1}$$

f)
$$x \to (\sqrt{2})$$

Limites: Definição Formal

Seja f uma função definida para todo número em algum intervalo aberto contendo a, exceto possivelmente no próprio número a. O limite de f(x) quando x tende a a será L, escrito como

$$\lim_{x \to a} f(x) = L$$

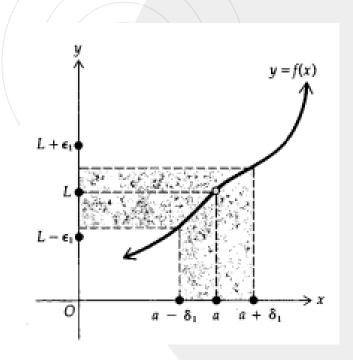
se a seguinte afirmativa for verdadeira:

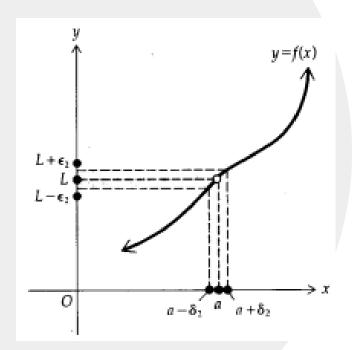
Dado $\epsilon > 0$ qualquer, existe um $\delta > 0$, tal que

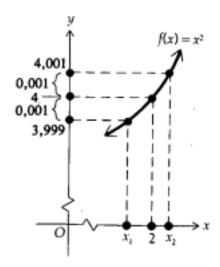
se
$$0 < |x - a| < \delta$$
 então $|f(x) - L| < \epsilon$ (4)

De maneira geral, escrevemos $\lim_{x\to a} f(x) = b$, se, quando x se aproxima de a $(x\to a)$, f(x) se aproxima de b $(f(x)\to b)$.

Limites: Definição Formal







EXEMPLO Seja
$$f$$
 a função definida por $f(x) = x^2$ e suponha $\lim_{x \to a} f(x) = 4$

Usando uma figura para $\epsilon = 0,001$, determine $\delta > 0$, tal que

se
$$0 < |x-2| < \delta$$
 então $|f(x)-4| < 0.001$

Solução Veja a Figura 8 e observe que se x > 0, os valores funcionais aumentam à medida que os valores de x crescem. Assim, a figura indica que precisamos de um valor positivo de x_1 , tal que $f(x_1) = 3,999$ e um valor positivo de x_2 , tal que $f(x_2) = 4,001$, isto é, precisamos de um x_1 e de um x_2 , tal que

$$x_1^2 = 3,999$$
 $x_2^2 = 4,001$

Cada uma dessas equações tem duas soluções. Em cada caso, rejeitamos a raiz quadrada negativa, pois x_1 e x_2 são positivos. Assim

$$x_1 = \sqrt{3,999}$$
 $x_2 = \sqrt{4,001}$
 $x_1 \approx 1,9997$ $x_2 \approx 2,0002$

Então, 2 - 1,9997 = 0,0003 e 2,0002 - 2 = 0,0002. Como 0,0002 < 0,0003, escolhemos $\delta = 0,0002$; assim temos a afirmativa

se
$$0 < |x-2| < 0.0002$$
 então $|f(x)-4| < 0.001$

Qualquer número positivo menor do que 0,0002 pode ser selecionado como o δ requerido.

Limite lateral à esquerda (valores menores que a):

$$\lim_{x\to a^-}f(x)$$

Limite lateral à direita (valores maiores que a):

$$\lim_{x\to a^+} f(x)$$

ATENÇÃO: O limite só existe se

$$\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x)$$

EXEMPLO

Calcule os limites abaixo usando as tabelas e calculadora (aula1), identifique o ϵ e o δ em cada linha.

1)
$$\lim_{x\to 3} 2x + 1$$

2)
$$\lim_{x\to 2} x^2 - 1$$

Exemplo - Faça as aproximações, usando 4 valores para cada:

$$\lim_{x \to 2} \frac{3x + 4}{8x - 1}$$

$$\lim_{x \to -1} \frac{2x + 1}{x^2 - 3x + 4}$$

$$\lim_{x \to 2} \sqrt{\frac{x^2 + 3x + 4}{x^3 + 1}}$$

$$\lim_{t \to 3/2} \sqrt{\frac{8t^3 - 27}{4t^2 - 9}}$$

$$\lim_{h \to -1} \frac{\sqrt{h + 5} - 2}{h + 1}$$

* g)
$$\lim_{x \to -2} \frac{\tan \pi x}{x + 2}$$
* h)
$$\lim_{x \to \pi/4} \frac{\sin x - \cos x}{1 - \tan x}$$

Assista, pause e reflita sobre este vídeo! ©

Leia o material sugerido (Livro e artigos)!

Busque mais informações por sua conta!

Faça os exercícios propostos o quanto antes!